Равноугольная цилиндрическая проекция. Географические фокусы от герра меркатора Математическое обоснование принципа меркаторской проекции

Он никогда не совершал морских путешествий, все открытия сделал в своем кабинете, но его труды достойно венчают эпоху Великих географических открытий. Он собрал воедино все накопленные в Европе географические знания, создал наиболее точные карты. С Герарда Меркатора берет свое начало наука, получившая название картографии.

В XIII-XIV веках в Европе появляются компас и морские навигационные карты, на которых довольно точно отображалась береговая линия, а внутренние области суши заполнялись картинами из жизни населявших их народов, подчас весьма далекими от действительности. В 1375-1377 годах Авраам Крескес составляет знаменитые Каталонские карты.

В них отразился весь опыт мореплавания, накопленный к тому времени. Вместо сетки параллелей и меридианов на них были нанесены линии, отмечавшие направление, которое указывала стрелка компаса: по ним можно было ориентироваться в далеких плаваниях. В 1409 году Мануэл Хризопор переводит "Географию" Птолемея, заново открывая ее для современников.

Морские плавания Колумба, Васко да Гамы, Магеллана дали множество новых фактов, не вписывающихся в прежние географические представления. Они требовали осмысления и оформления в виде новой географии, дававшей возможность осуществлять дальние торговые и военные походы. Выполнил эту задачу Герард Меркатор, знаменитый географ, автор новой картографии.

Эта удивительная карта была нарисована в 1538 году Герхардом Меркатором - чрезвычайно уважаемым картографом, жившим в 16 веке. Его работы весьма знамениты, и вы до сих пор можете купить атлас Меркатора в магазине. Он первым использовал слово «Атлас» для коллекции карт. И его работы в географии были столь же важны для развития науки, как и Коперника в астрономии. Кстати, он дружил и сотрудничал с известным алхимиком, магом и астрологом Джоном Ди. Был хорошим знатоком математики и в свое время даже преподавал ее. Разработал способ массового производства глобусов.

Герхард Меркатор был известен тем, что периодически обновлял свои работы и создавал новые, более подробные атласы мира по мере того, как всё больше берегов открывались мореплавателям, и к нему поступали всё более и более точные данные. В ходе одного такого обновления, его карта мира 1538 года (приведена на рисунке выше) была заменена новой в 1569 году. И что удивительно, карта 1538 года не только была более точной, чем более поздняя, но и содержала в себе корректные измерения географической долготы.

Чтобы понять значение этого факта, следует сказать, что вычисление долготы намного более сложный процесс, чем вычисление широты, которую можно определить наблюдениями за звёздами и Солнцем. Вычисление долготы требует решения уравнения «Расстояние = скорость, помноженная на время» и, что ещё более важно, точных часов. Определение долготы в своё время было названо «величайшей проблемой морской навигации» и в 1700-х годах в Англии даже был создан специальный Комитет по вопросам долготы, призванный решить эту проблему. В 1714 году сэр Исаак Ньютон предстал перед Комитетом и объяснил, что истинным корнем проблемы является то, что «часы, необходимые для измерения такой точности, пока ещё просто не изобретены». Королева Англии затем установила награду в 200 тысяч фунтов человеку, который сможет построить такие часы и наконец, в 1761 году некто Гаррисон получил эту награду и выдвинул свой прототип хронометра, который затем «открыл миру новую эру морских путешествий». В течение 19 века карты обновлялись уже корректными измерениями долготы.

Однако карта Меркатора была отмечена точными значениями долготы ещё в 1538 году - за 223 лет до того, как она была открыта. Откуда он получил эту информацию? Очевидно, что сам Меркатор не имел в то время никаких знаний о долготе и должен был получить эту информацию из некого иного источника, поскольку последующие карты были отмечены неверными значениями - а значит, их источник считался более надёжным. Эти карты таят в себе большую загадку - если человек глубокой древности никогда не совершал кругосветного путешествия и не располагал никакими познаниями о географической долготе, то как эти карты вообще появились на свет? Ответа на этот вопрос мы не знаем.

Карта мира, 1531 год:

Герард Меркатор родился 5 марта 1512 года в городе Рюпельмонде (современная Бельгия), в области, входившей тогда в состав Нидерландов. Он был седьмым ребенком в семье, жившей достаточно бедно. Когда Герарду исполнилось 14 или 15 лет, его отец умер, и семья осталась без средств к существованию. Воспитателем Герарда становится его родственник, кюре Гизберт Кремер. Благодаря ему Герард получает образование в гимназии небольшого городка Буа-де-Дюн. Хотя эта гимназия имела духовную направленность, в ней изучались и классические древние языки и начала логики. В это время Герард меняет свою немецкую фамилию Кремер, что значит "лавочник", на латинскую Меркатор - "торговец", "купец".

Гимназию он оканчивает очень быстро, за три с половиной года, и почти сразу же продолжает обучение в Лувенском университете, вновь благодаря поддержке Гизберта Кремера. Лувен был крупнейшим научным и учебным центром Нидерландов, в нем находилось 43 гимназии, а его университет, основанный еще в 1425 году, был лучшим в Северной Европе. В центр гуманистического образования и свободомыслия город превратился благодаря Эразму Роттердамскому (1465-1536), жившему некоторое время в Лувене.

Именно в университетские годы у Меркатора появляется особый интерес к естественным наукам, особенно к астрономии и географии. Он начинает читать сочинения древних авторов, стремясь узнать, как устроен земной шар. Впоследствии он напишет: "Когда я пристрастился к изучению философии, мне страшно нравилось изучение природы, потому что она дает объяснение причин всех вещей и является источником всякого знания, но я обращался лишь к частному вопросу - к изучению устройства мира". Убедившись в недостаточности своих знаний в области математики, особенно геометрии, он приступает к самостоятельному ее изучению. Существовавший тогда учебник его явно не удовлетворяет, и он читает в подлиннике первые семь книг "Начал" Евклида.

"Когда я пристрастился к изучению философии, мне страшно нравилось изучение природы, потому что она является источником всякого знания, но я обращался лишь к изучению устройства мира". Из письма Г. Меркатора

После окончания университета Меркатор получает степень "мастера искусств" (лиценциата) и остается жить в Лувене. Не теряя связи с университетом, он слушает лекции о планетах профессора Геммы Фризиуса, одного из выдающихся людей того времени. Блестящий астроном, математик, картограф и врач, Фризиус прокладывал новые пути в науке и практике. Его перу принадлежат сочинения по космографии и географии, он изготовлял глобусы и астрономические инструменты. Меркатор становится его учеником и помощником. Начав с гравировальных работ, он затем переходит и к более сложным - к изготовлению глобусов, астролябий и других астрономических приборов. Сконструированные и изготовленные им инструменты благодаря своей точности почти сразу приносят ему известность.

Одновременно с этим Меркатор включается в разработку математических основ картографии. Основная проблема заключалась в том, что из-за шарообразной формы Земли ее поверхность невозможно изобразить на плоскости без искажений, и нужно было найти такой способ, при котором изображения океанов и материков на карте выглядели бы наиболее похоже. В 25 лет Меркатор выступает со своей первой самостоятельной картографической работой: это карта Палестины, изданная в Лувене.

В следующем году он издает карту мира в двойной сердцевидной проекции, выполненную очень тщательно и учитывающую новейшие географические сведения. На этой карте название Америка впервые распространено на оба материка Нового Света, а сама Америка изображается отделенной от Азии, вопреки распространенному тогда ошибочному представлению. Все работы Меркатора подчинены единому плану и тесно взаимосвязаны: в пояснительном тексте к карте он говорит, что показанный на карте мир будет впоследствии рассмотрен детально.

В 1541 году Меркатор конструирует небесный глобус с изображением звезд и фигур созвездий, ко торый стал одним из лучших для того времени. Он свободно вращался вокруг оси, проходящей через полюсы и закрепленной внутри массивного медного кольца. О тличительной особенностью этого глобуса была нанесенная на его поверхность сетка кривых линий, предназначенных для облегчения морской навигации. Эти линии позволяют считать, что при создании глобуса Меркатором была в основном завершена разработка знаменитой картографической проекции, названной потом его именем.

Картографическая проекция Меркатора увеличивает размеры полярных стран, но зато позволяет легко определить нужное направление - это имеет огромное значение в мореплавании.

Благодаря своим работам по изготовлению карт и астрономических инструментов Меркатор становится все более знаменитым, слава о нем доходит даже до короля Испании Карла V. Но широкая известность привлекает и внимание инквизиции. Появляются сведения, что Меркатор вольно обсуждает несоответствия в учениях Аристотеля и в Библии, а кроме того, пребывает в постоянных разъездах, что само по себе всегда выглядит подозрительным в глазах инквизиторов. В 1544 году он попадает в тюрьму. Многочисленные заступничества не приводят к успеху, и лишь после вмешательства Карла V, проведя четыре месяца в заключении, Меркатор вновь обретает свободу.

Опасаясь гонений, он переезжает в Дуйсбург, где дышится вольнее, но условия работы гораздо хуже. Этот город удален от моря и от торговых путей, и добывать сведения о последних открытиях, получать новые чертежи и карты здесь сложнее, чем в Лувене. Однако его выручает географ Авраам Ортелий: между коллегами завязывается тесная переписка, благодаря которой Меркатор и получает нужные сведения.

В Дуйсбурге он продолжает работать над изданием карт. Теперь он трудится в одиночку, на его плечи ложится и составление, и вычерчивание, и гравировка карт, составление надписей и легенд, а также забота о продаже карт. Работа над созданием всеобъемлющего труда по космографии, поглотившая его целиком, началась в 1564 году. Меркатор задумывал картографическое произведение, включающее разделы "Сотворение мира", "Описание небесных предметов", "Земля и моря", "Генеалогия и история государств", "Хронология".

Из-за шарообразности Земли ее поверхность невозможно изобразить на плоскости абсолютно точно. На картах, составленных Меркатором, очертания океанов и континентов представлены с наименьшими искажениями.

В 1569 году Меркатор издает карту Мира, названную им "Новое и наиболее полное изображение земного шара, проверенное и приспособленное для применения в навигации". Она была выполнена на 18 листах, при ее изготовлении использовался новый способ изображения сетки параллелей и меридианов, получивший впоследствии название меркаторской (или цилиндрической) проекции. При составлении карты он ставил перед собой задачу показать земной шар на плоскости так, чтобы изображения всех точек земной поверхности соответствовали их истинному положению, а очертания стран, по возможности, не искажались. Еще одна цель состояла в изображении мира, известного древним - то есть Старого Света, - и места, занимаемого им на Земле. Меркатор писал, что с открытием новых материков перед всем миром предстали более отчетливо и ярко достижения древних в изучении Старого Света, изображение которого с наиболее возможной полнотой представлено на карте.

К 1571 году Меркатор завершает работу, названную им "Атлас, или картографические соображения о сотворении мира и вид сотворенного". К "Атласу" прилагались карты. С тех пор слово "атлас" стало нарицательным для собрания карт. Издание "Атласа" увидело свет лишь в 1595 году, через год после смерти Герарда Меркатора.

Карта Джона Ди 1582 года. На ней мы видим практически то же изображение Арктиды, что и на карте Меркатора 1569 года, но без окрашивания в разные цвета разных территорий и без нанесения названий. Арктида «пигмеев» здесь выдаётся на юг еще больше, однако участок побережья, отделенный горной грядой здесь отсутствует вовсе. Америка уехала от Четвертой Арктиды очень далеко, так что океан в данном месте весьма широкий, а самое узкое место находится в проливе, осуществляющем контакт с Азией. Так что тенденция к отделению Арктид от материков здесь осуществляется в наибольшей степени.

Храбрые моряки, чьи большие рейсы исследования открыли мир, являются изобразительными фигурами в европейской истории. В 1492 Колумбус нашел Новый Мир; В 1488 диаметры обнаружили Мыс Доброй Надежды; и Magellan, выделенный, чтобы плавать вокруг мира в 1519. Однако, есть одна трудность с этим уверенным утверждением европейского мастерства: это, возможно, не верно.

Кажется более вероятным, что мир и все его континенты были обнаружены китайским адмиралом по имени Zheng Он, флоты которого бродили по океанам между 1405 и 1435. Его деяния, которые хорошо зарегистрированы в китайские исторические отчеты, были написаны о в книге, которая появилась в Китае приблизительно в 1418, названном ”Изумительные Видения Плота Звезды”.

Карта на камне из г. Ика, Перу, материк разделён на 4 части реками - на мой взгляд похоже на Гиперборею, если это так - то перед вами древнейшая карта, возраст камней датируют от нескольких миллионов до десятсков млн. лет! т.к. среди найденных камней (их всего более 15 000) есть с изображениями динозавров, при чём в качестве домашних животных на острове вверху изображён теремок.

При решении задач навигации возникает необходимость отображения на морской карте линии курса корабля (локсодромии), измерения и прокладки углом и направлений. Исходя из указанных задач, к картографической проекции морской карты предъявляются следующие требования:

Локсодромия на карте должна изображаться прямой линией;
- углы, измеренные на местности, должны быть равны соответствующим углам, проложенным на карте, т. е. проекция должна быть равноугольной.

Указанным требованиям удовлетворяет прямая равноугольная цилиндрическая проекция, разработанная в 1569 году голландским картографом Герардом Кремером (Меркатором).

1. Земля принимается за шар и рассматривается условный глобус, масштаб которого равен главному масштабу.
2. Координатные линии (меридианы и параллели) проецируются на цилиндр.
3. Ось цилиндра совпадает с осью условного глобуса.
4. Цилиндр касается условного глобуса по линии экватора.
5. Меридианы и параллели условного глобуса проецируются на поверхность цилиндра таким образом, чтобы их проекции оставались в плоскотях меридианов и параллелей.
6. После разрезания цилиндра по образующей и разворачивания в плоскость образуется картографическая сетка - взаимноперпендикулярные прямые линии: меридианы и параллели.

7. Цилиндр касается условного глобуса по экватору, поэтому круг Ao1 на экваторе на карте изображается кругом A1.
8. При проецировании параллелей происходит их растяжение, причем чем параллель дальше отстоит от экватора (больше географическая широта) тем растяжение больше: круги Ао2 и Ао3 на карте изображаются эллипсами А2, А3, т. е. полученная проекция не равноугольная.
9. Чтобы эллипсы А2 и Аз превратились в круги А2" А3" неооходимо меридиан в каждой точке вытянуть пропорционально растяжению параллели в данной точке.
Чем больше широта, тем больше растянута параллель, а следовательно, тем больше должен быть вытянут меридиан
10. В результате одинаковые круги на глобусе, расположенные на разных параллелях, на карте изобразятся кругами разных размеров, увеличивающихся с географической широтой.

Графическое изображение на карте одной минуты дуги меридиана (морская миля) увеличивается с географической широтой.

Следовательно, при измерении и прокладке расстояний необхо-димо использовать ту часть линейного масштаба карты, в широте которого осуществляется плавание корабля.

Полученная таким образом проекция является:
- прямой - ось цилиндра совпадает с осью вращения Земли;
- равноугольной - элементарный круг на земной поверхности изображается на карте кругом (сохраняется подобие фигур);
- цилиндрической - картографическая сетка (меридианы и параллели)представляет собой взаимно перпендикулярные прямые линии.

Уравнение проекции для шара имеет вид:

X = R ln tg (45" + φ/2); y = R λ;

При получении проекции главный масштаб соответствовал главному масштабу условного глобуса, т е. при проецировании на цилиндр искажения отсутствовали на линии, по которой цилиндр касался глобуса - на экваторе.

При изготовлении карт в данной проекции это оказалось недостаточно удобным. Поэтому для каждой широтной зоны выбрали линию проекции, на которой отсутствуют искажения - главную параллель. Параллель, на которой масштаб равен главному масштабу, называется главной параллелью. Широта главной параллели данной карты указывается в заголовке карты.

Посмотрите на эту карту и скажите, какая территория больше по площади: Гренландия, помеченная белым, или Австралия, помеченная оранжевым? Кажется, что Гренландия больше Австралии раза в три по крайней мере.

Но, заглянув в справочник, мы к своему удивлению прочитаем, что площадь Австралии составляет 7,7 млн км 2 , а площадь Гренландии - только 2,1 млн км 2 . Так что Гренландия кажется такой большой только на нашей карте, а в действительности она меньше Австралии примерно в три с половиной раза. Сравнивая эту карту с глобусом, можно заметить, что чем дальше от экватора находится территория, тем сильнее она растянута.

Карта, которую мы с вами рассматриваем, построена с помощью картографической проекции, которую придумал в XVI веке фламандский учёный Герард Меркатор . Он жил в эпоху, когда прокладывались новые торговые пути через океаны. Колумб открыл Америку в 1492 году, а первое кругосветное плавание под руководством Магеллана состоялось в 1519–1522 годах - когда Меркатору было 10 лет. Открытые земли надо было наносить на карты, а для этого надо было научиться изображать на плоской карте круглую Землю. И карты надо было делать такими, чтобы капитанам было удобно ими пользоваться.

А как капитан пользуется картой? Он прокладывает по ней курс. Мореплаватели XIII–XVI века пользовались портуланами - картами, на которых изображался бассейн Средиземного моря, а также лежащие за Гибралтаром побережья Европы и Африки. На такие карты была нанесена сетка румбов - линий постоянного направления. Пусть капитану нужно проплыть в открытом море от одного острова до другого. Он прикладывает к карте линейку, определяет курс (например, «на юго-юго-восток») и отдаёт рулевому приказ держать этот курс по компасу.

Идея Меркатора состояла в том, чтобы сохранить принцип прокладки курса по линейке и на карте мира. То есть, если держать по компасу постоянное направление, то путь на карте будет прямой. Но как это сделать? И здесь на помощь картографу приходит математика. Мысленно разрежем глобус на узкие полоски по меридианам, как показано на рисунке. Каждую такую полоску можно без особых искажений развернуть на плоскости, после чего она превратится в треугольную фигуру - «клин» с искривлёнными боковыми сторонами.

Однако глобус при этом оказывается рассечённым, а карта должна быть сплошной, без разрезов. Чтобы этого добиться, разделим каждый клин на «почти квадраты». Для этого из нижней левой точки клина проведём отрезок под углом 45° до правой стороны клина, оттуда проведём горизонтальный разрез до левой стороны клина - отрезали первый квадрат. Из точки, где кончается сделанный разрез, снова проведём отрезок под углом 45° до правой стороны, потом горизонтальный - до левой, отрезая следующий «почти квадрат», и так далее. Если исходный клин был очень узким, «почти квадраты» будут отличаться от настоящих квадратов совсем незначительно, поскольку их боковые стороны будут почти вертикальными.

Выполним завершающие действия. Выпрямим «почти квадраты» до настоящей квадратной формы. Как мы поняли, искажения при этом можно сделать сколь угодно малыми, уменьшая ширину клиньев, на которые мы режем глобус. Квадраты, прилежавшие на глобусе к экватору, выложим в ряд. На них уложим по порядку все остальные квадраты, растянув их перед этим до размеров приэкваториальных квадратов. Получится сетка из квадратов одного размера. Правда, при этом параллели, равноотстоящие на карте, уже не будут равноотстоящими на глобусе. Ведь чем дальше исходный квадрат на глобусе отстоял от экватора, тем большему увеличению он подвергся при переносе на карту.

Однако углы между направлениями при таком построении останутся неискажёнными, потому что каждый квадрат практически только изменился в масштабе, а направления при простом увеличении картинки не меняются. И именно этого добивался Меркатор, когда он придумывал свою проекцию! Капитан может прокладывать свой курс на карте по линейке и вести по этому курсу свой корабль. При этом корабль будет плыть по линии, идущей под одним и тем же углом ко всем меридианам. Эта линия называется локсодромией .

Плавание по локсодромии очень удобно, поскольку оно не требует никаких специальных расчётов. Правда, локсодромия не является кратчайшей линией между двумя пунктами на земной поверхности. Такую кратчайшую линию можно определить, натянув на глобусе нитку между этими пунктами.

Художник Евгений Паненко

Проекции в картографии

С давних пор путешественники и мореплаватели занимались составлением карт, изображая в виде рисунков и схем изученные территории. Исторические исследования показывают, что картография появилась в первобытном обществе еще до появления письменности. В современную эпоху благодаря развитию средств передачи и обработки данных, таких как компьютеры, интернет, спутниковая и мобильная связь, важнейшей составляющей информационных ресурсов остается геоинформация, т.е. данные о положении и координатах различных объектов в окружающем нас географическом пространстве.

Современные карты составляются в электронном виде с использованием аппаратов дистанционного зондирования Земли, спутниковой глобальной системы позиционирования (GPS либо ГЛОНАСС) и т. д. Однако сущность картографии остается прежней - это изображение объектов на карте, позволяющее однозначно идентифицировать их, определив положение при помощи привязки к той или иной системе географических координат. Неудивительно поэтому, что одной из основных и самых распространенных сегодня картографических проекций является равноугольная цилиндрическая проекция Меркатора, впервые примененная для создания карт четыре с половиной века назад

Работа древних землемеров не выходила за пределы геодезических измерений и расчетов для расстановки вех вдоль маршрута будущей дороги или обозначения границ земельных участков. Но посте­пенно накапливалось множество данных – расстояния между городами, препятствия на пути, расположение водных объектов, лесных массивов, особенности ландшафта, границы государств и материков. Карты захватывали все большие территории, становились более детальными, но при этом возрастала и их погрешность.

Поскольку Земля представляет собой геоид (фигуру, близкую к эллипсоиду), для изображения поверхности геоида Земли на карте необходимо развернуть, спроецировать эту поверхность на плоскость тем или иным способом. Методы отображения геоида на плоской карте называются картографическими проекциями. Существует несколько видов проекций, и каждая из них вносит в плоское изображение свои искажения длин, углов, площадей или формы фигур.

Как сделать точную карту?

Полностью избежать искажений при построении карты невозможно. Однако можно избавиться от какого-либо одного типа искажений. Так называемые равновеликие проекции сохраняют площади, но при этом искажают углы и формы. Равновеликими проекциями удобно пользоваться в экономических, почвенных и других мелкомасштабных тематических картах – для того, чтобы с их помощью рассчитывать, например, площади территорий, подвергшихся загрязнению, или управлять лесными хозяйствами. Примером такой проекции служит равновеликая коническая проекция Альберса , разработанная в 1805 г. немецким картографом Хейнрихом Альберсом.

Равноугольные проекции - это проекции без искажений углов. Такие проекции удобны для решения навигационных задач. Угол на местности всегда равен углу на такой карте, а прямая линия на местности изображается прямой линией на карте. Это позволяет мореплавателям и путешественникам прокладывать маршрут и точно следовать ему с помощью показаний компаса. Однако линейный масштаб карты при такой проекции зависит от положения точки на ней.

Самой древней равноугольной проекцией считается стереографическая проекция, которая была придумана Аполлонием Пергским около 200 г. до нашей эры. Эта проекция и по сей день используется для карт звезд­ного неба, в фотографии – для отображения сфериче­ских панорам, в кристаллографии – для изображения точечных групп симметрии кристаллов. Но использование этой проекции в мореплавании было бы затруднительным в силу слишком больших линейных искажений.

Проекция Меркатора

В 1569 г. фламандский географ Герхард Меркатор (латинизированное имя Герарда Кремера) разработал и впервые применил в своем атласе (полное название «Атлас, или Космографические рассуждения о сотворении мира и вид сотворенного») равноугольную цилиндрическую проекцию , названную впоследствии его именем и ставшую одной из основных и самых распространенных картографических проекций.

Для построения цилиндрической проекции Меркатора земной геоид помещают внутри цилиндра так, чтобы геоид касался цилиндра по экватору. Проекцию получают, проводя лучи из центра геоида до пересечения с поверхностью цилиндра. Если после этого цилиндр разрезать вдоль оси и развернуть, то получится плоская карта поверхности Земли. Образно это можно представить следующим образом: глобус оборачивается листом бумаги по экватору, в центр глобуса помещается лампа и на листе бумаги отображаются спроецированные лампой изображения материков, островов, рек и т. п. Если бы на бумагу был нанесен способный засвечиваться слой, то, развернув лист, мы получили бы готовую карту.

Полюса в такой проекции расположены на бесконечном расстоянии от экватора, и, следовательно, не могут быть изображены на карте. На практике карта имеет верхний и нижний пределы широт – примерно до 80° СШ и ЮШ.

Параллели и меридианы картографической сетки изображаются на карте параллельными прямыми линиями, при этом они всегда перпендикулярны. Расстояния между меридианами одинаковы, а вот расстояние между параллелями равно расстоянию между меридианами вблизи экватора, но быстро увеличивается при приближении к полюсам.

Масштаб в этой проекции не является постоянным, он увеличивается от экватора к полюсам как обратный косинус широты, но масштабы по вертикали и по горизонтали всегда равны.

Равенство вертикального и горизонтального масштабов обеспечивает равноугольность проекции – угол между двумя линиями на местности равен углу между изображением этих линий на карте. Благодаря этому хорошо отображается форма небольших объектов. Но искажения площади увеличиваются по направлению к полярным регионам. Например, несмотря на то, что Гренландия составляет всего одну восьмую размера Южной Америки, в проекции Меркатора она представляется больше. Большие искажения площадей делают проекцию Меркатора непригодной для общегеографических карт мира.

Линия, проведенная между двумя точками на карте в этой проекции, пересекает меридианы под одним и тем же углом. Эта линия называется румбом или локсо­дромией . Надо отметить, что эта линия не описывает кратчайшее расстояние между точками, но в проекции Меркатора всегда изображается прямой линией. Этот факт делает проекцию идеальной для нужд навигации. Если мореплаватель желает отправиться, например, из Испании в Вест-Индию, все, что ему нужно сделать, это провести линию между двумя точками, и штурман будет знать, какого направления по компасу постоянно придерживаться, чтобы приплыть к месту назначения.

С точностью до сантиметра

Для применения проекции Меркатора (как, впрочем, и любой другой) необходимо определить систему координат на земной поверхности и корректно выбрать так называемый референц-эллипсоид – эллипсоид вращения, приближенно описывающий форму поверхности Земли (геоида). Для местных карт в России в качестве такого референц-эллипсоида с 1946 г. используется эллипсоид Красовского. В большинстве европейских стран вместо него используется эллипсоид Бесселя. Самым популярным в наши дни эллипсоидом, предназначенным для составления общемировых карт, является мировая геодезическая система 1984 г. WGS-84. Она определяет трехмерную систему координат для позиционирования на земной поверхности относительно центра масс Земли, погрешность составляет менее 2 см. Классическая равноугольная цилиндрическая проекция Меркатора применяется к соответствующему эллипсоиду. Так, например, сервис Яндекс.Карты использует эллиптическую WGS-84 проекцию Меркатора.

В последнее время в связи со стремительным развитием картографических веб-сервисов большое распространение получил другой вариант проекции Меркатора – на базе сферы, а не эллипсоида. Этот выбор обусловлен более простыми расчетами, которые могут быть быстро выполнены клиентами этих сервисов прямо в браузере. Часто эту проекцию называют «сфериче­ским Меркатором» . Такой вариант проекции Меркатора используется сервисами Google Maps , а также 2ГИС .

Еще одним известным вариантом проекции Меркатора является равно­угольная проекция Гаусса-Крюгера . Она была введена выдающимся немецким ученым Карлом Фридрихом Гауссом в 1820-1830 гг. для картографирования Германии – так называемой ганноверской триангуляции . В 1912 и 1919 гг. ее развил немецкий геодезист Л. Крюгер.

По сути, она является поперечной цилиндрической проекцией. Поверхность земного эллипсоида делится на трех- или шестиградусные зоны, ограниченные меридианами от полюса до полюса. Цилиндр касается среднего меридиана зоны, и она проецируется на этот цилиндр. Всего можно выделить 60 шестиградусных или 120 трехградусных зон.

В России для топографических карт масштаба 1: 1000000 применяют шестиградусные зоны. Для топографических планов масштаба 1: 5000 и 1:2000 применяются трехградусные зоны, осевые меридианы которых совпадают с осевыми и граничными меридианами шестиградусных зон. При съемках городов и территорий под строительство крупных инженерных сооружений могут быть использованы частные зоны с осевым меридианом посередине объекта.

Многомерная карта

Современные информационные технологии позволяют не просто нанести контуры объекта на карту, но и менять его вид в зависимости от масштаба, связать с его географическим положением множество других атрибутов, таких как адрес, информация о расположенных в данном здании организациях, количество этажей и т. п., делая электронную карту многомерной, разномасштабной, интегрируя в ней одновременно несколько справочных баз данных. Для обработки этого массива информации и представления его в удобном для пользователя виде необходимы достаточно сложные программные продукты, так называемые геоинформационные системы , разработку и поддержку которых могут осуществить лишь достаточно крупные, обладающие необходимым опытом IT-компании. Но, несмотря на то, что современные электронные карты мало похожи на своих бумажных предшественников, все равно в их основе лежат картография и тот или иной способ отображения земной поверхности на плоскость.

Для иллюстрации методов современной картографии можно рассмотреть опыт работы компании «Дата Ист» (Новосибирск), занимающейся разработкой программного обеспечения в области геоинформационных технологий.

Проекция, которая выбирается для построения электронной карты, зависит от назначения карты. Для карт общего пользования и для навигационных карт, как правило, применяется проекция Меркатора с системой координат WGS-84. Например, эта система координат использовалась в проекте «Мобильный Новосибирск» , созданном по заказу мэрии города Новосибирска для городского муниципального портала .

Для крупномасштабных карт с целью минимизации линейных искажений используются как зональные равноугольные проекции (Гаусса-Крюгера), так и неравноугольные проекции (например, коническая равно­промежуточная проекция – Equidistant conic ).

Сегодня карты создаются с широким привлечением аэрофотосъемки и спутниковых фотографий. Для качественной работы над картами в компании «Дата Ист» создан архив космических снимков, охватывающих территории Новосибирской, Кемеровской, Томской, Омской областей, Алтайского края, Республик Алтай и Хакасия, других регионов России. С помощью этого архива, кроме крупномасштабных карт территории, можно изготавливать схемы отдельных объектов и участ­ков под заказ. При этом в зависимости от территории и необходимого масштаба применяется та или иная проекция.

Со времен Меркатора картография изменилась радикально. Информационная революция затронула эту область человеческой деятельности, наверное, больше всех. Вместо томов бумажных карт теперь каждому путешественнику, туристу, водителю доступны компактные электронные навигаторы, содержащие в себе массу полезной информации о географических объектах.

Но суть карт осталась той же – показать нам в удобном и ясном виде, с указанием точных географических координат, расположение объектов окружающего нас мира.

Литература

ГОСТ Р 50828-95. Геоинформационное картографирование. Пространственные данные, цифровые и электронные карты. Общие требования. М., 1995.

Капралов Е. Г. и др. Основы геоинформатики: в 2 кн. / Учеб. пособие для студ. вузов / Под ред. Тикунова В. С. М.: Академия, 2004. 352, 480 c.

Жалковский Е. А. и др. Цифровая картография и геоинформатика / Краткий терминологический словарь. М.: Картгеоцентр-Геодезиздат, 1999. 46 с.

Баранов Ю. Б. и др. Геоинформатика. Толковый словарь основных терминов. М.: ГИС-Ассоциация, 1999.

ДеМерс Н. Н. Географические информационные системы. Основы.: Пер. с англ. М.: Дата+, 1999.

Карты любезно предоставлены ООО «Дата Ист» (г. Новосибирск)

Позволяющий накладывать контуры стран на другие территории с учётом компенсации искажений проекции Меркатора. Эта проекция была когда-то создана в навигационных целях - чтобы обеспечить точное взаимное расположение территорий по осям "север - юг" и "запад - восток". Однако у неё есть свой недостаток - чем ближе к полюсам, тем больше искажение. Другие проекции также имеют серьёзные искажения. Именно поэтому наше восприятие географической карты тоже существенно искажено - скажем, Гренландия на карте проекции Меркатора занимает площадь втрое больше Австралии, хотя в реальности она в 3,5 раза меньше (!). И чем ближе к экватору, тем относительная величина стран меньше.

В общем, на этом сайте можно проделывать всякие любопытные фокусы и смотреть метаморфозы разных стран в наложении. Даже удивительно, что такой сайт не появился раньше - настолько хороша базовая идея. Иногда получаются удивительные эффекты, рушащие привычные шаблоны. Кроме того, страну можно вертеть по окружности, и в этом случае также будут учитываться компенсации проекции.

Давайте некоторые эффекты посмотрим.
Вот, например, наложение на индонезийские острова некоторых стран Европы. Смотрите, как скромненько смотрится немаленькая Франция на Калимантане (справа). Чехия наложена на юг Малайзии и Сингапур (в центре), а слева - Норвегия на Суматре. Очень протяжённая в европейских масштабах, на самом деле она всего лишь чуть длинней о.Суматра.


2. Китай на Восточной Евразии. Если зафиксировать его западную границу на линии Таллин - Прага, то восток (Маньчжурия) будет восточней Новосибирска, а Ляодунский полуостров - где-то в районе Астаны. Хайнань при этом будет в центральном Иране.

3. Австралия на Восточной Евразии. Вот тут компенсация проекции Меркатора видна наиболее наглядно: она простирается от Мюнхена до Челябинска, а с юга на север - и того больше. Тут видно, какие колоссальные по площади пустынные территории имеются в Австралии - не меньше, чем сибирские стылые просторы, ведь там населен более-менее только юго-восток и узкой полоской на запад.

4. Мексика на Европе. От французского Бреста почти до Нижнего Новгорода. А мексиканская Калифорния тянется от Нормандии до Венеции.

5. Индонезия на Восточной Евразии. Протяженность островов эквивалентна расстоянию от Северной Ирландии до Центрального Казахстана, а один только Калимантан легко покрывает всю Прибалтику с российским Северо-Западом.

6. Соединённые Штаты на Восточной Евразии. От Таллина - больше чем до Красноярска!

7. Казахстан на Европе. Тоже, в общем-то, очень солидно: от запада Франции почти до Харькова. Накрывает большую часть континентальной Европы.

8. Иран на Северной Европе: от норвежских Лофотен до Казани:)

9. Вьетнам на Европейской России. По вертикали эквивалентен расстоянию поезда №7 Ленинград - Севастополь, но и по горизонтали тоже ничего: от Москвы до Челябинска, причём изогнуто.

Другие любопытные сравнения.

10. Камчатка и Великобритания. Небольшая совсем: от мыса Лопатка до Паланы.

11. Эстония как треть небольшой в принципе Либерии.

12. Австрия, Венгрия, Бельгия на Мадагаскаре.

Посмотрим теперь эквиваленты России.

13. Россия на Австралии. Если Перт в районе Махачкалы, то Мельбурн - где-то около Барнаула. Солидно. Но всё равно Россиюшка простирается чуть ли не до Фиджи.

14. Россия на Африке. Кубань в районе ЮАР (Новороссийск как Кейптаун) - Камчатка достигает юга Анатолии, примерно где Анталья.

15. Россия на Южной Америке. Если Огненная Земля примерно где Чечня - то Камчатка в районе Колумбии, а Чукотка заходит северней Панамского канала. Видите, сколь колоссальна наша страна? Больше целого континента.

16. Россия на Северной Америке. Сан-Франциско в районе Крыма - Чукотка почти у Ирландии. Тут хорошо видна величина океанских просторов Северной Атлантики, кстати.

17. Люксембург на Санкт-Петербурге. Не такой уж он и маленький:)))

18. На этой территории (Бангладеш, отмечено синим) - живёт 168 млн. человек!!! Представляете плотность населения? И это не комфортный умеренный климат, а влажные тропические джунгли и протоки Ганга и Брахмапутры...

19. И на десерт - Чили вдоль Транссиба. Как видите, она покрывает расстояние от Москвы до Байкала, узкой полосой.

Вот такие любопытные сравнения:)

Похожие публикации