События а и в называются независимыми если. Зависимые события и условная вероятность

События А, В называются независимыми , если вероятности каждого из них не зависит от того, произошло или нет другое событие. Вероятности независимых событий называются безусловными .

События А, В называются зависимыми , если вероятность каждого из них зависит от того, произошло или нет другое событие. Вероятность события В, вычисленная в предположении, что другое событие А уже осуществилось, называется условной вероятностью .

Если два события А и В – независимые, то справедливы равенства:

Р(В) = Р(В/А), Р(А) = Р(А/В) или Р(В/А) – Р(В) = 0 (9)

Вероятность произведения двух зависимых событий А, В равна произведению вероятности одного из них на условную вероятность другого:

Р(АВ) = Р(В) ∙ Р(А/В) или Р(АВ) = Р(А) ∙ Р(В/А) (10)

Вероятность события В при условии появления события А:

Вероятность произведения двух независимых событий А, В равна произведению их вероятностей:

Р(АВ) = Р(А) ∙ Р(В) (12)

Если несколько событий попарно независимы, то отсюда еще не следует их независимость в совокупности.

События А 1 , А 2 , …, А n (n>2) называются независимыми в совокупности, если вероятность каждого из них не зависит от того, произошли или нет любые события из числа остальных.

Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Р(А 1 ∙А 2 ∙А 3 ∙…∙А n) = Р(А 1)∙Р(А 2)∙Р(А 3)∙…∙Р(А n). (13)

Конец работы -

Эта тема принадлежит разделу:

Конспект лекций основные понятия теории вероятностей и статистики, используемые в эконометрике

Казанский государственный.. финансово экономический институт.. кафедра статистики и эконометрики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дискретная случайная величина
Наиболее полным, исчерпывающим описанием дискретной СВявляется ее закон распределения.Законом распределения случайной величины называется всякое соотношение, устан

Непрерывная случайная величина
Для непрерывной СВ нельзя определить вероятность того, что она примет некоторое конкретное значение (точечную вероятность). Так как в любом интервале содержится бесконечное число значений, то вероя

Взаимосвязь случайных величин
Многие экономические показатели определяются несколькими числами, являясь многомерными СВ. Упорядоченный набор Х=(Х1, Х2, …, Хn) случайных в

Выборочное наблюдение
Генеральной совокупностьюназывается множество всех возможных значений или реализаций исследуемой СВ Х при данном реальном комплексе условий. Выборкой

Вычисление выборочных характеристик
Для любой СВ Х кроме определения ее функции распределения желательно указать числовые характеристики, важнейшими из которых является: - математическое ожидание; - дисперсия

Нормальное распределение
Нормальное распределение (распределение Гаусса) является предельным случаем почти всех реальных распределений вероятности. Поэтому оно используется в очень большом числе реальных приложений теории

Распределение Стьюдента
Пусть СВ U ~ N (0,1), СВ V – независимая от U величина, распределенная по закону χ2 с n степенями свободы. Тогда величина

Распределение Фишера
Пусть V и W – независимые СВ, распределенные по закону χ2 со степенями свободы v1 = m и v2 = n соответственно. Тогда величина

Точечные оценки и их свойства
Пусть оценивается некоторый параметр наблюдаемой СВ

Состоятельность
Оценка называется несмещенной оценкой параметра, если ее математи

Свойства выборочных оценок
На начальном этапе в качестве оценки той или иной числовой характеристики (математического ожидания, дисперсии и т.п.) берется выборочная числовая характеристика. Затем, исследуя эту оценку, ее уто

Доверительный интервал для дисперсии нормальной СВ
Пусть Х ~ N (m, σ2) причем и - неизвестны. Пусть для оценки

Критерии проверки. Критическая область
Проверку статистической гипотезы осуществляют на основании данных выборки.Для этого используют специально подобранную СВ (статистику, критерий), точное или приближенное значение которой известно. Э

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях).

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий А и В равна произведению вероятностей этих событий: Р(АВ) = Р(А) × Р(В)

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– в результате броска на 1-й монете выпадет орёл;
– в результате броска на 2-й монете выпадет орёл.

Найдём вероятность события А 1 А 2 (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события А 1 и А 2 независимы. По теореме умножения вероятностей независимых событий:

Р(А 1 А 2) = Р(А 1) × Р(А 2) = × =
Аналогично:

= × = × = – вероятность того, что на 1-й монете выпадет решка и на 2-й решка;

= × = × = – вероятность того, что на 1-й монете появится орёл и на 2-ой решка;

= × = × = – вероятность того, что на 1-й монете появится решка и на 2-ой орёл.



Заметьте, что события , , , образуют полную группу и сумма их вероятностей равна единице: + + + = = 1

Теорема умножения очевидным образом распространяется и на бо льшее количество независимых событий, так, например, если события А, В, С независимы, то вероятность их совместного наступления равна: Р(АВС) = Р(А) × Р(В)×Р(С).

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

S 1 – из 1-го ящика извлечена стандартная деталь;

S 2 – из 2-го ящика извлечена стандартная деталь;

S 3 – из 3-го ящика извлечена стандартная деталь.

По классическому определению: Р(S 1) = = 0,8; Р(S 2) = = 0,7; Р(S 3) = = 0,9; – соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением S 1 S 2 S 3 .

По теореме умножения вероятностей независимых событий:

Р(S 1 S 2 S 3) = Р(S 1) × Р(S 2) × Р(S 3) = 0,8 × 0,7 × 0,9 = 0,504 – вероятность того, что из 3-х ящиков будет извлечено по одной стандартной детали.

Ответ : вероятность того, что все детали окажутся стандартными, равна 0,504

Задача 4(для самостоятельного решения)

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ». Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий дан в конце урока.

Зависимые события . Событие Х называют зависимым , если его вероятность Р(Х) зависит от одного или бо льшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно дойти до ближайшего магазина:

Х – завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным Р(Х) = 1, так и невозможным Р(Х) = 0. Таким образом, событие Х является зависимым .

Другой пример, В – на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие В будет зависимым, поскольку его вероятность Р(В) будет зависеть от того, какие билеты уже вытянули однокурсники.

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Несколько событий называются независимыми в совокупности , если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми , если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события Bи обозначается P{A|B}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости - в виде P{B|A}≠P{B}.

Вероятность события в испытаниях Бернулли. Формула Пуассона.

Повторными независимыми испытаниями, испытаниями Бернулли или схемой Бернулли называются такие испытания, если при каждом испытании имеются только два исхода - появление события А или и вероятность этих событий остается неизменной для всех испытаний. Эта простая схема случайных испытаний имеет большое значение в теории вероятностей.

Наиболее известным примером испытаний Бернулли является опыт с последовательным бросанием правильной (симметричной и однородной) монеты, где событием А является выпадение, например, "герба", ("решки").

Пусть в некотором опыте вероятность события А равна P(А)=р , тогда , где р+q=1. Выполним опыт n раз, предположив, что отдельные испытания независимы, а значит исход любых из них не связан с исходами предыдущих (или последующих) испытаний. Найдем вероятность появления событий А точно k раз, скажем только в первых k испытаниях. Пусть - событие, заключающееся в том, что при n испытаниях событие А появиться точно k раз в первых испытаниях. Событие можно представить в виде

Поскольку опыты мы предположили независимыми, то

41)[стр2] Если ставить вопрос о появлении события А k-раз в n испытаниях в произвольном порядке, то событие представимо в виде

Число различных слагаемых в правой части этого равенства равно числу испытаний из n по k , поэтому вероятность событий , которую будем обозначать , равна

Последовательность событий образует полную группу независимых событий . Действительно, из независимости событий получаем

А также научились решать типовые задачи с независимыми событиями, и сейчас последует гораздо более интересное продолжение, которое позволит не только освоить новый материал, но и, возможно, окажет практическую житейскую помощь.

Кратко повторим, что такое независимость событий: события и являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события. Простейший пример – подбрасывание двух монет. Вероятность выпадения орла либо решки на одной монете никак не зависит от результата броска другой монеты.

Понятие зависимости событий вам тоже знакомо и настал черёд заняться ими вплотную.

Сначала рассмотрим традиционный набор, состоящий из двух событий: событие является зависимым , если помимо случайных факторов его вероятность зависит от появления либо непоявления события . Вероятность события , вычисленная в предположении того, что событие уже произошло , называется условной вероятностью наступления события и обозначается через . При этом события и называют зависимыми событиями (хотя, строго говоря, зависимо только одно из них) .

Карты в руки:

Задача 1

Из колоды в 36 карт последовательно извлекаются 2 карты. Найти вероятность того, что вторая карта окажется червой, если до этого:

а) была извлечена черва;
б) была извлечена карта другой масти.

Решение : рассмотрим событие: – вторая карта будет червой. Совершенно понятно, что вероятность этого события зависит от того, черву или не черву вытянули ранее.

а) Если сначала была извлечена черва (событие ), то в колоде осталось 35 карт, среди которых теперь находится 8 карт червовой масти. По классическому определению :
при условии , что до этого тоже была извлечена черва.

б) Если же сначала была извлечена карта другой масти (событие ), то все 9 черв остались в колоде. По классическому определению :
– вероятность того, что вторая карта окажется червой при условии , что до этого была извлечена карта другой масти.

Всё логично – если вероятность извлечения червы из полной колоды составляет , то при извлечении следующей карты аналогичная вероятность изменится: в первом случае – уменьшится (т.к. черв стало меньше), а во втором – возрастёт: (т.к. все червы остались в колоде).

Ответ :

Зависимых событий, разумеется, может быть и больше. Пока задача не остыла, добавим ещё одно: – третьей картой будет извлечена черва. Предположим, что произошло событие , а затем событие ; тогда в колоде осталось 34 карты, среди которых 7 черв. По классическому определению :
– вероятность наступления события при условии , что до этого были извлечены две червы.

Для самостоятельной тренировки:

Задача 2

В конверте находится 10 лотерейных билетов, среди которых 3 выигрышных. Из конверта последовательно извлекаются билеты. Найти вероятности того, что:

а) 2-й извлечённый билет будет выигрышным, если 1-й был выигрышным;
б) 3-й будет выигрышным, если предыдущие два билета были выигрышными;
в) 4-й будет выигрышным, если предыдущие билеты были выигрышными.

Краткое решение с комментариями в конце урока.

А теперь обратим внимание на один принципиально важный момент: в рассмотренных примерах требовалось найти лишь условные вероятности, при этом предыдущие события считались достоверно состоявшимися . Но ведь в действительности и они являются случайными! Так, в «разогретой» задаче извлечение червы из полной колоды – есть событие случайное, вероятность которого равна .

На практике гораздо чаще требуется отыскать вероятность совместного появления зависимых событий. Как, например, найти вероятность события , состоящего в том, что из полной колоды будет извлечена черва и затем ещё одна черва? Ответ на этот вопрос даёт

теорема умножения вероятностей зависимых событий : вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло:

В нашем случае:
– вероятность того, что из полной колоды будут извлечены 2 червы подряд.

Аналогично:
– вероятность того, что сначала будет извлечена карта другой масти и затем черва.

Вероятность события получилась заметно больше вероятности события , что, в общем-то, было очевидно безо всяких вычислений.

И, само собой, не нужно питать особых надежд, что из конверта с десятью лотерейными билетами (Задача 2) вы вытяните 3 выигрышных билета подряд:
, впрочем, это ещё щедрый шанс.

Да, совершенно верно – теорема умножения вероятностей зависимых событий естественным образом распространяется и на бОльшее их количество.

Закрепим материал несколькими типовыми примерами:

Задача 3

В урне 4 белых и 7 черных шаров. Из урны наудачу один за другим извлекают два шара, не возвращая их обратно. Найти вероятность того, что:

а) оба шара будут белыми;
б) оба шара будут чёрными;
в) сначала будет извлечён белый шар, а затем – чёрный.

Обратите внимание на уточнение «не возвращая их обратно». Этот комментарий дополнительно подчёркивает тот факт, что события зависимы. Действительно, а вдруг извлечённые шары возвращают обратно? В случае возвратной выборки вероятности извлечения чёрного и белого шара меняться не будут, а в такой задаче уже следует руководствоваться теоремой умножения вероятностей НЕзависимых событий .

Решение : всего в урне: 4 + 7 = 11 шаров. Поехали:

а) Рассмотрим события – первый шар будет белым, – второй шар будет белым и найдём вероятность события , состоящего в том, что 1-й шар будет белым и 2-й белым.

По классическому определению вероятности: . Предположим, что белый шар извлечён, тогда в урне останется 10 шаров, среди которых 3 белых, поэтому:
– вероятность извлечения белого шара во 2-м испытании при условии, что до этого был извлечён белый шар.


– вероятность того, что оба шара будут белыми.

б) Найдём вероятность события , состоящего в том, что 1-й шар будет чёрным и 2-й чёрным

По классическому определению: – вероятность того, что в 1-м испытании будет извлечён чёрный шар. Пусть извлечён чёрный шар, тогда в урне останется 10 шаров, среди которых 6 чёрных, следовательно: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен чёрный шар.

По теореме умножения вероятностей зависимых событий:
– вероятность того, что оба шара будут чёрными.

в) Найдём вероятность события (сначала будет извлечён белый шар и затем чёрный)

После извлечения белого шара (с вероятностью ) в урне останется 10 шаров, среди которых 3 белых и 7 чёрных, таким образом: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен белый шар.

По теореме умножения вероятностей зависимых событий:
– искомая вероятность.

Ответ :

Данную задачу нетрудно проверить через теорему сложения вероятностей событий, образующих полную группу . Для этого найдём вероятность 4-го недостающего события: – того, что сначала будет извлечён чёрный шар и затем белый.

События образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
,что и требовалось проверить.

И сразу же предлагаю проверить, насколько хорошо вы усвоили изложенный материал:

Задача 4

Какова вероятность того, что из колоды в 36 карт будут извлечены два туза подряд?

Задача 5

В урне 6 черных, 5 красных и 4 белых шара. Последовательно извлекают три шара. Найти вероятность того, что

а) третий шар окажется белым, если до этого был извлечён черный и красный шар;
б) первый шар окажется черным, второй – красным и третий – белым.

Решения и ответы в конце урока.

Надо сказать, что многие из рассматриваемых задач разрешимы и другим способом, но чтобы не возникло путаницы, пожалуй, вообще о нём умолчу.

Наверное, все заметили, что зависимые события возникают в тех случаях, когда осуществляется некоторая цепочка действий. Однако сама по себе последовательность действий ещё не гарантируют зависимость событий. Пусть, например, студент наугад отвечает на вопросы какого-нибудь теста – данные события хоть и происходят одно за другим, но незнание ответа на один вопрос никак не зависит от незнания других ответов =) Хотя, закономерности тут, конечно, есть =) Тогда совсем простой пример с неоднократным подбрасыванием монеты – сей увлекательный процесс даже так и называется: повторные НЕзависимые испытания .

Я как мог, старался отсрочить этот момент и подбирать разнообразные примеры, но если в задачах на теорему умножения независимых событий хозяйничают стрелки, то здесь происходит самое настоящее нашествие урн с шарами =) Поэтому никуда не деться – снова урна:

Задача 6

Из урны, в которой находится 6 белых и 4 черных шара, извлекаются наудачу один за другим три шара. Найти вероятность того, что:

а) все три шара будут черными;
б) будет не меньше двух шаров черного цвета.

Решение :всего: 6 + 4 = 10 шаров в урне.

Событий в данной задаче будет многовато, и в этой связи целесообразнее использовать смешанный стиль оформления, обозначая прописными латинскими буквами только основные события. Надеюсь, вы уже поняли, по какому принципу подсчитываются условные вероятности.

а) Рассмотрим событие: – все три шара будут черными.

По теореме умножения вероятностей зависимых событий:

б) Второй пункт интереснее, рассмотрим событие: – будет не меньше двух шаров черного цвета. Данное событие состоит в 2 несовместных исходах: либо все шары будут чёрными (событие ) либо 2 шара будут чёрным и 1 белым – обозначим последнее событие буквой .

Событие включается в себя 3 несовместных исхода:

в 1-м испытании извлечён белый и во 2-м и в 3-м испытаниях – чёрные шары
или
и во 2-м – БШ и в 3-м – ЧШ
или
в 1-м испытании извлечён ЧШ и во 2-м – ЧШ и в 3-м – БШ.

Желающие могут ознакомиться с более трудными примерами из сборника Чудесенко , в которых перекладываются несколько шаров. Особым любителям предлагаю задачи повышенной комбинационной сложности – с двумя последовательными перемещениями шаров из 1-й во 2-ю урну, из 2-й в 3-ю и финальным извлечением шара из последней урны – смотрите последние задачи файла Дополнительные задачи на теоремы сложения и умножения вероятностей . Кстати, там немало и других интересных заданий.

А в заключение этой статьи мы разберём прелюбопытнейшую задачу, которой я вас заманивал на самом первом уроке =) Даже не разберём, а проведём небольшое практическое исследование. Выкладки в общем виде будут слишком громоздкие, поэтому рассмотрим конкретный пример:

Петя сдаёт экзамен по теории вероятностей, при этом 20 билетов он знает хорошо, а 10 плохо. Предположим, в первый день экзамен сдаёт часть группы, например, 16 человек, включая нашего героя. В общем, ситуация до боли знакома: студенты один за другим заходят в аудиторию и тянут билеты.

Очевидно, что последовательное извлечение билетов представляет собой цепь зависимых событий, и возникает насущный вопрос : в каком случае Пете с бОльшей вероятностью достанется «хороший» билет – если он пойдёт «в первых рядах», или если зайдёт «посерединке», или если будет тянуть билет в числе последних? Когда лучше заходить?

Сначала рассмотрим «экспериментально чистую» ситуацию, в которой Петя сохраняет свои шансы постоянными – он не получает информацию о том, какие вопросы уже достались однокурсникам, ничего не учит в коридоре, ожидая своей очереди, и т.д.

Рассмотрим событие: – Петя зайдёт в аудиторию самым первым и вытянет «хороший» билет. По классическому определению вероятности: .

Как изменится вероятность извлечения удачного билета, если пропустить вперёд отличницу Настю? В этом случае возможны две несовместные гипотезы:

– Настя вытянет «хороший» (для Пети) билет;
– Настя вытянет «плохой» билет, т.е. увеличит шансы Пети.

Событие же (Петя зайдёт вторым и вытянет «хороший» билет) становится зависимым .

1) Предположим, что Настя с вероятностью «увела» у Пети один удачный билет. Тогда на столе останутся 29 билетов, среди которых 19 «хороших». По классическому определению вероятности:

2) Теперь предположим, что Настя с вероятностью «избавила» Петю от 1-го «плохого» билета. Тогда на столе останутся 29 билетов, среди которых по-прежнему 20 «хороших». По классическому определению:

Используя теоремы сложения вероятностей несовместных и умножения вероятностей зависимых событий, вычислим вероятность того, что Петя вытянет «хороший» билет, будучи вторым в очереди:

Вероятность… осталось той же! Хорошо, рассмотрим событие: – Петя пойдёт третьим, пропустив вперёд Настю и Лену, и вытащит «хороший» билет.

Здесь гипотез будет побольше: дамы могут «обокрасть» джентльмена на 2 удачных билета, либо наоборот – избавить его от 2 неудачных, либо извлечь 1 «хороший» и 1 «плохой» билет. Если провести аналогичные рассуждения, воспользоваться теми же теоремами, то… получится такое же значение вероятности !

Таким образом, чисто с математической точки зрения, без разницы, когда идти – первоначальные вероятности останутся неизменными. НО . Это только усреднённая теоретическая оценка, так, например, если Петя пойдёт последним, то это вовсе не значит, что ему останутся на выбор 10 «хороших» и 5 «плохих» билетов в соответствии с его изначальными шансами. Данное соотношение может варьироваться в лучшую или худшую сторону, однако всё же маловероятно, что среди билетов останется «одна халява», или наоборот – «сплошной ужас». Хотя «уникальные» случаи не исключены – всё-таки тут не 3 миллиона лотерейных билетов с практически нулевой вероятностью крупного выигрыша. Поэтому «невероятное везение» или «злой рок» будут слишком уж преувеличенными высказываниями. Даже если Петя знает всего лишь 3 билета из 30, то его шансы составляют 10%, что заметно выше нуля. И из личного опыта расскажу обратный случай: на экзамене по аналитической геометрии я хорошо знал 24 вопроса из 28, так вот – в билете мне попались два «плохих» вопроса; вероятность сего события подсчитайте самостоятельно:)

Математика и «чистый эксперимент» – это хорошо, но какой стратегии и тактики всё же выгоднее придерживаться в реальных условиях ? Безусловно, следует принять во внимание субъективные факторы, например, «скидку» преподавателя для «храбрецов» или его усталость к концу экзамена. Зачастую эти факторы могут быть даже решающими, но в заключительных рассуждениях я постараюсь не сбрасывать со счетов и дополнительные вероятностные аспекты:

Если Вы готовы к экзамену хорошо, то, наверное, лучше идти «в первых рядах». Пока билетов полный комплект, постулат «маловозможные события не происходят » работает на Вас гораздо в бОльшей степени. Согласитесь, что намного приятнее иметь соотношение «30 билетов, среди которых 2 плохих», чем «15 билетов, среди которых 2 плохих». А то, что два неудачных билета на отдельно взятом экзамене (а не по средней теоретической оценке!) так и останутся на столе – вполне и вполне возможно.

Теперь рассмотрим «ситуацию Пети» – когда студент готов к экзамену достаточно хорошо, но с другой стороны, и «плавает» тоже неплохо. Иными словам, «больше знает, чем не знает». В этом случае целесообразно пропустить вперёд 5-6 человек, и ожидать подходящего момента вне аудитории. Действуйте по ситуации. Довольно скоро начнёт поступать информация, какие билеты вытянули однокурсники (снова зависимые события!) , и на «заигранные» вопросы можно больше не тратить силы – учите и повторяйте другие билеты, повышая тем самым первоначальную вероятность своего успеха. Если «первая партия» экзаменующихся «избавила» вас сразу от 3-4 трудных (лично для Вас) билетов, то выгоднее как можно быстрее попасть на экзамен – именно сейчас шансы значительно возросли. Постарайтесь не упускать момент – всего несколько пропущенных вперёд человек, и преимущество, скорее всего, растает. Если же наоборот, «плохих» билетов вытянули мало – ждите. Через несколько человек эта «аномалия» опять же с большой вероятностью, если не исчезнет, то сгладится в лучшую сторону. В «обычном» и самом распространённом случае выгода тоже есть: расклад «24 билета/8 плохих» будет лучше соотношения «30 билетов/10 плохих». Почему? Трудных билетов теперь не десять, а восемь! С удвоенной энергией штудируем материал!

Если Вы готовы неважно или плохо, то само собой, лучше идти в «последних рядах» (хотя возможны и оригинальные решения, особенно, если нечего терять) . Существует небольшая, но всё же ненулевая вероятность, что Вам останутся относительно простые вопросы + дополнительная зубрёжка + шпоры, которые отдадут отстрелявшиеся сокурсники =) И, да – в совсем критической ситуации есть ещё следующий день, когда экзамен сдаёт вторая часть группы;-)

Вряд ли многие люди задумываются, можно ли просчитать события, которые в той или иной мере случайны. Выражаясь простыми словами, реально ли узнать, какая сторона кубика в выпадет в следующий раз. Именно этим вопросом задались два великих ученых, положившие начало такой науке, как теория вероятности, вероятность события в которой изучается достаточно обширно.

Зарождение

Если попытаться дать определение такому понятию, как теория вероятности, то получится следующее: это один из разделов математики, который занимается изучением постоянства случайных событий. Ясное дело, данное понятие толком не раскрывает всю суть, поэтому необходимо рассмотреть ее более детально.

Хотелось бы начать с создателей теории. Как было выше упомянуто, их было двое, это и Именно они одни из первых попытались с использованием формул и математических вычислений просчитать исход того или иного события. В целом же зачатки этой науки проявлялись еще в средневековье. В то время разные мыслители и ученые пытались проанализировать азартные игры, такие как рулетка, кости и так далее, тем самым установить закономерность и процентное соотношение выпадения того или иного числа. Фундамент же был заложен в семнадцатом столетии именно вышеупомянутыми учеными.

Поначалу их труды нельзя было отнести к великим достижениям в этой области, ведь все, что они сделали, это были попросту эмпирические факты, а опыты ставились наглядно, без использования формул. Со временем получилось добиться больших результатов, которые появились вследствие наблюдения за бросанием костей. Именно этот инструмент помог вывести первые внятные формулы.

Единомышленники

Нельзя не упомянуть о таком человеке, как Христиан Гюйгенс, в процессе изучения темы, носящей название "теория вероятности" (вероятность события освещается именно в этой науке). Данная персона очень интересна. Он, так же как и представленные выше ученые, пытался в виде математических формул вывести закономерность случайных событий. Примечательно, что делал он это не совместно с Паскалем и Ферма, то есть все его труды никак не пересекались с этими умами. Гюйгенс вывел

Интересен тот факт, что его работа вышла задолго до результатов трудов первооткрывателей, а точнее, на двадцать лет раньше. Среди обозначенных понятий известнее всего стали:

  • понятие вероятности как величины шанса;
  • математическое ожидание для дискретных случаев;
  • теоремы умножения и сложения вероятностей.

Также нельзя не вспомнить который тоже внес весомый вклад в изучении проблемы. Проводя свои, ни от кого не зависящие испытания, он сумел представить доказательство закона больших чисел. В свою очередь, ученые Пуассон и Лаплас, которые работали в начале девятнадцатого столетия, смогли доказать изначальные теоремы. Именно с этого момента для анализа ошибок в ходе наблюдений начали использовать теорию вероятностей. Стороной обойти данную науку не смогли и русские ученые, а точнее Марков, Чебышев и Дяпунов. Они, исходя из проделанной работы великих гениев, закрепили данный предмет в качестве раздела математики. Трудились эти деятели уже в конце девятнадцатого столетия, и благодаря их вкладу, были доказаны такие явления, как:

  • закон больших чисел;
  • теория цепей Маркова;
  • центральная предельная теорема.

Итак, с историей зарождения науки и с основными персонами, повлиявшими на нее, все более или менее понятно. Сейчас же пришло время конкретизировать все факты.

Основные понятия

Перед тем как касаться законов и теорем, стоит изучить основные понятия теории вероятностей. Событие в ней занимает главенствующую роль. Данная тема довольно объемная, но без нее не удастся разобраться во всем остальном.

Событие в теории вероятности - этолюбая совокупность исходов проведенного опыта. Понятий данного явления существует не так мало. Так, ученый Лотман, работающий в этой области, высказался, что в данном случае речь идет о том, что «произошло, хотя могло и не произойти».

Случайные события (теория вероятности уделяет им особое внимание) - это понятие, которое подразумевает абсолютно любое явление, имеющее возможность произойти. Или же, наоборот, этот сценарий может не случиться при выполнении множества условий. Также стоит знать, что захватывают весь объем произошедших явлений именно случайные события. Теория вероятности указывает на то, что все условия могут повторяться постоянно. Именно их проведение получило название "опыт" или же "испытание".

Достоверное событие - это то явление, которое в данном испытании на сто процентов произойдет. Соответственно, невозможное событие - это то, которое не случится.

Совмещение пары действий (условно случай A и случай B) есть явление, которое происходит одновременно. Они обозначаются как AB.

Сумма пар событий А и В - это С, другими словами, если хотя бы одно из них произойдет (А или В), то получится С. Формула описываемого явления записывается так: С = А + В.

Несовместные события в теории вероятности подразумевают, что два случая взаимно исключают друг друга. Одновременно они ни в коем случае не могут произойти. Совместные события в теории вероятности - это их антипод. Здесь подразумевается, что если произошло А, то оно никак не препятствует В.

Противоположные события (теория вероятности рассматривает их очень подробно) просты для понимания. Лучше всего разобраться с ними в сравнении. Они почти такие же, как и несовместные события в теории вероятности. Но их отличие заключается в том, что одно из множества явлений в любом случае должно произойти.

Равновозможные события - это те действия, возможность повтора которых равна. Чтобы было понятней, можно представить бросание монеты: выпадение одной из ее сторон равновероятно выпадению другой.

Благоприятствующее событие легче рассмотреть на примере. Допустим, есть эпизод В и эпизод А. Первое - это бросок игрального кубика с появлением нечетного числа, а второе - появление числа пять на кубике. Тогда получается, что А благоприятствует В.

Независимые события в теории вероятности проецируются только на два и больше случаев и подразумевают независимость какого-либо действия от другого. Например, А - выпадение решки при бросании монеты, а В - доставание валета из колоды. Они и есть независимые события в теории вероятности. С этим моментом стало понятнее.

Зависимые события в теории вероятности также допустимы лишь для их множества. Они подразумевают зависимость одного от другого, то есть явление В может произойти только в том случае, если А уже произошло или же, наоборот, не произошло, когда это - главное условие для В.

Исход случайного эксперимента, состоящего из одного компонента, - это элементарные события. Теория вероятности поясняет, что это такое явление, которое совершилось лишь единожды.

Основные формулы

Итак, выше были рассмотрены понятия "событие", "теория вероятности", определение основным терминам этой науки также было дано. Сейчас же пришло время ознакомиться непосредственно с важными формулами. Эти выражения математически подтверждают все главные понятия в таком непростом предмете, как теория вероятности. Вероятность события и здесь играет огромную роль.

Начать лучше с основных И перед тем как приступить к ним, стоит рассмотреть, что это такое.

Комбинаторика - это в первую очередь раздел математики, он занимается изучением огромного количества целых чисел, а также различных перестановок как самих чисел, так и их элементов, различных данных и т. п., ведущих к появлению ряда комбинаций. Помимо теории вероятности, эта отрасль важна для статистики, компьютерной науки и криптографии.

Итак, теперь можно переходить к представлению самих формул и их определению.

Первой из них будет выражение для числа перестановок, выглядит оно следующим образом:

P_n = n ⋅ (n - 1) ⋅ (n - 2)…3 ⋅ 2 ⋅ 1 = n!

Применяется уравнение только в том случае, если элементы различаются лишь порядком расположения.

Теперь будет рассмотрена формула размещения, выглядит она так:

A_n^m = n ⋅ (n - 1) ⋅ (n-2) ⋅ ... ⋅ (n - m + 1) = n! : (n - m)!

Это выражение применимо уже не только лишь к порядку размещения элемента, но и к его составу.

Третье уравнение из комбинаторики, и оно же последнее, называется формулой для числа сочетаний:

C_n^m = n ! : ((n - m))! : m !

Сочетанием называются выборки, которые не упорядочены, соответственно, к ним и применяется данное правило.

С формулами комбинаторики получилось разобраться без труда, теперь можно перейти к классическому определению вероятностей. Выглядит это выражение следующим образом:

В данной формуле m - это число условий, благоприятствующих событию A, а n - число абсолютно всех равновозможных и элементарных исходов.

Существует большое количество выражений, в статье не будут рассмотрены все, но затронуты будут самые важные из них такие, как, например, вероятность суммы событий:

P(A + B) = P(A) + P(B) - эта теорема для сложения только несовместных событий;

P(A + B) = P(A) + P(B) - P(AB) - а эта для сложения только совместимых.

Вероятность произведения событий:

P(A ⋅ B) = P(A) ⋅ P(B) - эта теорема для независимых событий;

(P(A ⋅ B) = P(A) ⋅ P(B∣A); P(A ⋅ B) = P(A) ⋅ P(A∣B)) - а эта для зависимых.

Закончит список формула событий. Теория вероятностей рассказывает нам о теоремеБайеса, которая выглядит так:

P(H_m∣A) = (P(H_m)P(A∣H_m)) : (∑_(k=1)^n P(H_k)P(A∣H_k)),m = 1,...,n

В данной формуле H 1 , H 2 , …, H n - это полная группа гипотез.

Примеры

Если тщательно изучить любой раздел математики, в нем не обходится без упражнений и образцов решений. Так и теория вероятности: события, примеры здесь являются неотъемлемым компонентом, подтверждающим научные выкладки.

Формула для числа перестановок

Допустим, в карточной колоде есть тридцать карт, начиная с номинала один. Далее вопрос. Сколько есть способов сложить колоду так, чтобы карты с номиналом один и два не были расположены рядом?

Задача поставлена, теперь давайте перейдем к ее решению. Для начала нужно определить число перестановок из тридцати элементов, для этого берем представленную выше формулу, получается P_30 = 30!.

Исходя из этого правила, мы узнаем, сколько есть вариантов сложить колоду по-разному, но нам необходимо вычесть из них те, в которых первая и вторая карта будут рядом. Для этого начнем с варианта, когда первая находится над второй. Получается, что первая карта может занять двадцать девять мест - с первого по двадцать девятое, а вторая карта со второго по тридцатое, получается всего двадцать девять мест для пары карт. В свою очередь, остальные могут принимать двадцать восемь мест, причем в произвольном порядке. То есть для перестановки двадцати восьми карт есть двадцать восемь вариантов P_28 = 28!

В итоге получается, что если рассматривать решение, когда первая карта находится над второй, лишних возможностей получится 29 ⋅ 28! = 29!

Используя этот же метод, нужно вычислить число избыточных вариантов для того случая, когда первая карта находится под второй. Получается также 29 ⋅ 28! = 29!

Из этого следует, что лишних вариантов 2 ⋅ 29!, в то время как необходимых способов сбора колоды 30! - 2 ⋅ 29!. Остается только лишь посчитать.

30! = 29! ⋅ 30; 30!- 2 ⋅ 29! = 29! ⋅ (30 - 2) = 29! ⋅ 28

Теперь нужно перемножать между собой все числа от одного до двадцати девяти, после чего в конце умножить все на 28. Ответ получается 2,4757335 ⋅〖10〗^32

Решение примера. Формула для числа размещения

В данной задаче необходимо выяснить, сколько есть способов, чтобы поставить пятнадцать томов на одной полке, но при условии, что всего томов тридцать.

В этой задаче решение немного проще, чем в предыдущей. Используя уже известную формулу, необходимо вычислить суммарное число расположений из тридцати томов по пятнадцать.

A_30^15 = 30 ⋅ 29 ⋅ 28⋅... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ 16 = 202 843 204 931 727 360 000

Ответ, соответственно, будет равен 202 843 204 931 727 360 000.

Теперь возьмем задачу чуть сложнее. Необходимо узнать, сколько есть способов расставить тридцать книг на двух книжных полках, при условии, что на одной полке могут находиться лишь пятнадцать томов.

Перед началом решения хотелось бы уточнить, что некоторые задачи решаются несколькими путями, так и в этой есть два способа, но в обоих применена одна и та же формула.

В этой задаче можно взять ответ из предыдущей, ведь там мы вычислили, сколько раз можно заполнить полку на пятнадцать книг по-разному. Получилось A_30^15 = 30 ⋅ 29 ⋅ 28 ⋅ ... ⋅ (30 - 15 + 1) = 30 ⋅ 29 ⋅ 28 ⋅ ...⋅ 16.

Вторую же полку рассчитаем по формуле перестановки, ведь в нее помещается пятнадцать книг, в то время как всего остается пятнадцать. Используем формулу P_15 = 15!.

Получается, что в сумме будет A_30^15 ⋅ P_15 способов, но, помимо этого, произведение всех чисел от тридцати до шестнадцати надо будет умножить на произведение чисел от одного до пятнадцати, в итоге получится произведение всех чисел от одного до тридцати, то есть ответ равен 30!

Но эту задачу можно решить и по-иному - проще. Для этого можно представить, что есть одна полка на тридцать книг. Все они расставлены на этой плоскости, но так как условие требует, чтобы полок было две, то мы одну длинную пилим пополам, получается две по пятнадцать. Из этого получается что вариантов расстановки может быть P_30 = 30!.

Решение примера. Формула для числа сочетания

Сейчас будет рассмотрен вариант третьей задачи из комбинаторики. Необходимо узнать, сколько способов есть, чтобы расставить пятнадцать книг при условии, что выбирать необходимо из тридцати абсолютно одинаковых.

Для решения будет, конечно же, применена формула для числа сочетаний. Из условия становится понятным, что порядок одинаковых пятнадцати книг не важен. Поэтому изначально нужно выяснить общее число сочетаний из тридцати книг по пятнадцать.

C_30^15 = 30 ! : ((30-15)) ! : 15 ! = 155 117 520

Вот и все. Используя данную формулу, в кратчайшее время удалось решить такую задачу, ответ, соответственно, равен 155 117 520.

Решение примера. Классическое определение вероятности

С помощью формулы, указанной выше, можно найти ответ в несложной задаче. Но это поможет наглядно увидеть и проследить ход действий.

В задаче дано, что в урне есть десять абсолютно одинаковых шариков. Из них четыре желтых и шесть синих. Из урны берется один шарик. Необходимо узнать вероятность доставания синего.

Для решения задачи необходимо обозначить доставание синего шарика событием А. Данный опыт может иметь десять исходов, которые, в свою очередь, элементарные и равновозможные. В то же время из десяти шесть являются благоприятствующими событию А. Решаем по формуле:

P(A) = 6: 10 = 0,6

Применив эту формулу, мы узнали, что возможность доставания синего шарика равна 0,6.

Решение примера. Вероятность суммы событий

Сейчас будет представлен вариант, который решается с использованием формулы вероятности суммы событий. Итак, в условии дано, что есть два ящика, в первом находится один серый и пять белых шариков, а во втором - восемь серых и четыре белых шара. В итоге из первого и второго короба взяли по одному из них. Необходимо узнать, каков шанс того, что доставаемые шарики будут серого и белого цвета.

Чтобы решить данную задачу, необходимо обозначить события.

  • Итак, А - взяли серый шарик из первого ящика: P(A) = 1/6.
  • А’ - взяли белый шарик также из первого ящика: P(A") = 5/6.
  • В - извлекли серый шарик уже из второго короба: P(B) = 2/3.
  • В’ - взяли серый шарик из второго ящика: P(B") = 1/3.

По условию задачи необходимо, чтобы случилось одно из явлений: АВ’ или же А’В. Используя формулу, получаем: P(AB") = 1/18, P(A"B) = 10/18.

Сейчас была использована формула по умножению вероятности. Далее, чтобы узнать ответ, необходимо применить уравнение их сложения:

P = P(AB" + A"B) = P(AB") + P(A"B) = 11/18.

Вот так, используя формулу, можно решать подобные задачи.

Итог

В статье была представлена информация по теме "Теория вероятности", вероятность события в которой играет важнейшую роль. Конечно же, не все было учтено, но, исходя из представленного текста, можно теоретически ознакомиться с данным разделом математики. Рассматриваемая наука может пригодиться не только в профессиональном деле, но и в повседневной жизни. С ее помощью можно просчитать любую возможность какого-либо события.

В тексте были затронуты также знаменательные даты в истории становления теории вероятности как науки, и фамилии людей, чьи труды были в нее вложены. Вот так человеческое любопытство привело к тому, что люди научились просчитывать даже случайные события. Когда-то они просто заинтересовались этим, а сегодня об этом уже знают все. И никто не скажет, что ждет нас в будущем, какие еще гениальные открытия, связанные с рассматриваемой теорией, будут совершены. Но одно можно сказать точно - исследования на месте не стоят!

Похожие публикации